Dr. Olivier GUAITELLA
olivier.guaitella@polytechnique.edu


45 years old
Tel : + 33 1 69 33 59 48
Laboratoire de Physique des Plasmas
Ecole Polytechnique
91128 Palaiseau cedex - FRANCE
higlights Research interests Communications

publications
invited talks

Teaching Network

conferences organization
collaborations
scientific advisor

Short Bio

Highlights

A new powerful method to measure the gas temperature in plasma

published on 2016-01-22 in highlights > publications

A number of techniques have been developed to determine gas temperatures in electrical discharges. However they either reposes on questionable assumptions made on the equilibrium between rotational and translational temperature (emission spectroscopy, LIF on rotational level of ground state…), or they are based on Doppler broadening of the absorption signal of a probe atoms (usually Argon) which implies necessarily a spatial averaging along the line of sight. We have therefore constructed a narrow-line-width pulsed ultraviolet laser to allow measurement of atomic Doppler profiles by TALIF, and demonstrate its application to oxygen atoms in a simple DC discharge in pure oxygen. This news technique opens the door to spatially and time resolved measurements of gas temperature in non thermal plasmas providing a chance to improve one of the major source of discrepancies of all kinetic models.

View online at: http://iopscience.iop.org/article/10.1088/1748-0221/10/11/C11003/meta

Figure  Narrow band width laser used for the measurement of gas temeprature in plasma from the Doppler broadening of TALIF signal of O atoms

New publication in Journal of Physics D

published on 2015-06-05 in highlights > publications

Atmospheric pressure plasma jets have been extensively studied for the last years especially because of their potential applications for surface treatments and biomedical applications. Their interaction with a dielectric substrate is therefore the core of any further developments of these technologies. The work we have just published in collaboration with Dr. Ana Sobota from Eindhoven University of Technology, characterizes the morphology of the spreading of a plasma jet when reaching a target surface for all possible controlling parameters of the jet source. Further details can be found by downloading the paper here.

View online at: http://iopscience.iop.org/0022-3727/48/25/255202

Figure  Spatial and temporal spreading of a kHz helium plasma jet impinging on a glass target. See more by downloading the paper


Older highlights